Exercise 19

A man starts walking north at $4 \mathrm{ft} / \mathrm{s}$ from a point P. Five minutes later a woman starts walking south at $5 \mathrm{ft} / \mathrm{s}$ from a point 500 ft due east of P. At what rate are the people moving apart 15 min after the woman starts walking?

Solution

Draw a schematic of the paths after 20 minutes. Let y_{1} be the distance the man walks, and let y_{2} be the distance the woman walks. Multiply the walking speeds by the respective times spent walking ($20 * 60$ seconds for the man and $15 * 60$ seconds for the woman) to obtain the distances the man and woman walk.

At any time, the distance between the man and woman r is related to the horizontal distance x and the vertical distance y by the Pythagorean theorem.

$$
r^{2}=x^{2}+y^{2}
$$

The derivative of r with respect to $t, d r / d t$, represents the rate at which the man and woman are moving apart. Differentiate both sides of the Pythagorean theorem with respect to t and use the chain rule.

$$
\begin{aligned}
\frac{d}{d t}\left(r^{2}\right) & =\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
2 r \cdot \frac{d r}{d r} & =2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t} \\
r \frac{d r}{d t} & =x \frac{d x}{d t}+y \frac{d y}{d t} \\
\frac{d r}{d t} & =\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{r} \\
& =\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Note that y is the sum of the man and woman's distances: $y=y_{1}+y_{2}$.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{x \frac{d x}{d t}+\left(y_{1}+y_{2}\right) \frac{d}{d t}\left(y_{1}+y_{2}\right)}{\sqrt{x^{2}+\left(y_{1}+y_{2}\right)^{2}}} \\
& =\frac{x \frac{d x}{d t}+\left(y_{1}+y_{2}\right)\left(\frac{d y_{1}}{d t}+\frac{d y_{2}}{d t}\right)}{\sqrt{x^{2}+\left(y_{1}+y_{2}\right)^{2}}} \\
& =\frac{x \frac{d x}{d t}+\left(y_{1}+y_{2}\right)(4+5)}{\sqrt{x^{2}+\left(y_{1}+y_{2}\right)^{2}}} \\
& =\frac{x \frac{d x}{d t}+9\left(y_{1}+y_{2}\right)}{\sqrt{x^{2}+\left(y_{1}+y_{2}\right)^{2}}}
\end{aligned}
$$

The horizontal distance between the man and woman does not change as time passes, so $d x / d t=0$.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{x(0)+9\left(y_{1}+y_{2}\right)}{\sqrt{x^{2}+\left(y_{1}+y_{2}\right)^{2}}} \\
& =\frac{9\left(y_{1}+y_{2}\right)}{\sqrt{x^{2}+\left(y_{1}+y_{2}\right)^{2}}}
\end{aligned}
$$

Evaluate $d r / d t$ at $t=20$ to get the desired rate 15 min after the woman starts walking.

$$
\left.\frac{d r}{d t}\right|_{t=20}=\frac{9[(20 * 60 * 4)+(15 * 60 * 5)]}{\sqrt{(500)^{2}+[(20 * 60 * 4)+(15 * 60 * 5)]^{2}}}=\frac{837}{\sqrt{8674}} \approx 8.98702 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

